

HMIC™ PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Features

- Exceptional Broadband Performance, 0.05 6.0 GHz
- Low Loss: T_X = 0.33 dB @ 2010 MHz, 5V / 20mA
- $T_X = 0.38 \text{ dB} @ 3.5 \text{ GHz}, 5V / 20\text{mA}$
- High Isolation: Rx = 44dB @ 2010 MHz, 20mA / 5V
- Rx = 36dB @ 3.5 GHz, 20mA / 5V
- High T_X RF Input Power = 50 W C.W. @ 2010MHz
- High Tx RF Input Peak Power > 1000 W
- Suitable for Very High Power TD-SCDMA & WiMAX **Applications**
- Surface Mount 4mm PQFN Package, RoHS* Compliant

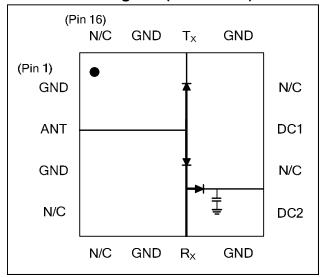
Description and Applications

The MA-COM MASW-000834-13560T is a SPDT Broadband, high linearity, common anode, PIN diode T/R switch for 0.05 - 6.0 GHz applications, including WiMAX & WiFi. The device is provided in industry standard 4mm PQFN plastic packaging. This device incorporates a PIN diode die fabricated with M/A-COM's patented Silicon-Glass $\mathsf{HMIC}^\mathsf{TM}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact 4mm PQFN package, SPDT switch offers wideband 0.05 - 6.0 GHz performance with excellent isolation to loss ratio for both T_X and R_X states. The PIN diode provides exceptional 50 W C.W. power handling and 65 dBm IIP3 at 2010 MHz for maximum switch performance.

Absolute Maximum Ratings ¹

@ T_A = +25 °C (unless otherwise specified)


Parameter	Absolute Maximum
Forward Current	100 mA
Reverse Voltage (RF & D.C.)	-200 V
Operating Temperature	-40 °C to +85 °C
Storage Temperature	-55 °C to +150 °C
Junction Temperature	+175 °C
T _X Incident C.W. Power	50W (47 dBm) ² @ 2010MHz
T _X Peak Incident Power	>300 W, 5us, 1% duty

1. Exceeding these limits may cause permanent damage.

1

- 2. Baseplate Temperature must be controlled to a constant 25°C. See page 7 for derating curve.
- * Restrictions on Hazardous Substances, European Union Directive

Functional Diagram (TOP VIEW)

Pin Configuration:

(Center Metal Area is RF, D.C., and Thermal Ground)

Pin	Function	Pin	Function
1	GND	9	DC2
2	ANT	ANT 10	
3	GND	11	DC1
4	N/C	12	N/C
5	N/C	13	GND
6	GND	14	TX
7	RX	15	GND
8	GND	16	N/C

Ordering Information

Part Number	Package
MASW-000834-13560T	Tape and Reel
MASW-000834-001SMB	Sample Board
MADR-008851-0001TB	Sample Board with recommended external Driver & MASW-000834-13560T Switch

Static Sensitivity

These devices are rated Class 1B Human Body. Proper ESD control techniques should be used when handling these devices.

- North America Tel: 800.366.2266 Europe Tel: +353.21.244.6400
- India Tel: +91.80.4155721 • China Tel: +86.21.2407.1588
 - Visit www.macomtech.com for additional data sheets and product information.

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Electrical Specifications at +25°C, Characteristic Impedance, 20mA / 5V, Z_0 = 50 Ω

Parameter	Symbol	20mA / 5V Conditions	Units	Min.	Тур.	Max.
F = 900 MHz			"			
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.34	0.56
Insertion Loss, T _X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.26	0.445
Isolation, T _X To R _X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	45.8	52.1	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	21.7	27.1	_
F = 1800 MHz						
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.40	0.72
Insertion Loss, T _X	Tx IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.32	0.49
Isolation, T _X To R _X	Rx ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	43.7	48.9	
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	18.4	21.4	
F = 2010 MHz						
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.42	0.75
Insertion Loss, T _X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.33	0.5
Isolation, T _X To R _X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	43.2	44.6	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	17.7	19.9	_
Input Return Loss, T _X	T _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB		32.1	_
Input Return Loss, R _X	R _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	24.2	_

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Electrical Specifications at +25°C, Characteristic Impedance, 20mA / 5V, Z_0 = 50 Ω

Parameter	Symbol 20mA / 5V Conditions		Units	Min.	Тур.	Max.
F = 2.3-2.7 GHz			'			-1
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.46	0.84
Insertion Loss, T _X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.35	0.525
Isolation, T _X To R _X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	40.2	41.2	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	16.2	18.6	_
Input Return Loss, T _X	T _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	30.5	_
Input Return Loss, R _X	R _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	22.9	_
F = 3.3-3.8 GHz						
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.56	1.0
Insertion Loss, T _X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.38	0.575
Isolation, T _X To R _X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	33.7	35.9	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	13.6	16.1	_
Input Return Loss, T _X	T _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	27.4	_
Input Return Loss, R _X	R _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	21.9	_
F = 4.9-5.9 GHz						
Insertion Loss, R _X	R _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.78	_
Insertion Loss, T _X	T _X IL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	0.52	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	26.4	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	11.8	_
Input Return Loss, T _X	T _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	20.3	_
Input Return Loss, R _X	R _X RL	See Bias Table 1, pg. 10, Pinc= 0 dBm	dB	_	24.2	_

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
F = 900 MHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.27	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.22	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	53.3	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	27.4	_
F = 1800 MHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.32	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.27	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	50.2	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	21.6	_
F = 2010 MHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.34	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.28	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	45.5	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	20.1	_
Input Return Loss, T _X	T _x RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	33.1	_
Input Return Loss, R _X	R _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	24.1	_

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

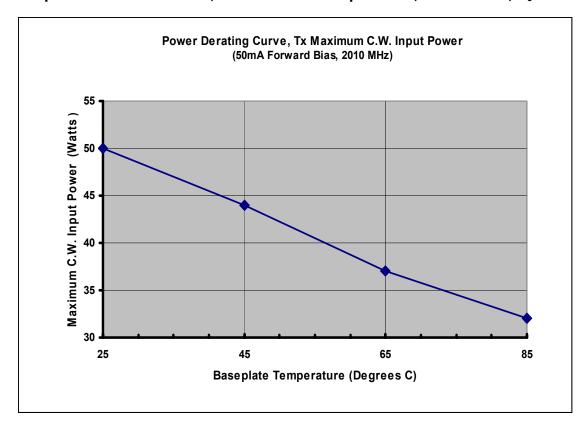
Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
F = 2.3-2.7 GHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB		0.38	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.30	
Isolation, T_X To R_X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	41.8	_
Isolation, R_X To T_X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	18.7	_
Input Return Loss, T _X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	31.3	_
Input Return Loss, R_X	R _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	22.8	_
F = 3.3-3.8 GHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.47	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.33	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	36.2	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	16.2	_
Input Return Loss, T _X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	28.0	_
Input Return Loss, R _X	R _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	21.8	_
F = 4.9-5.9 GHz						
Insertion Loss, R _X	R _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.72	_
Insertion Loss, T _X	T _X IL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	0.48	_
Isolation, T _X To R _X	R _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	26.6	_
Isolation, R _X To T _X	T _X ISO	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	11.8	_
Input Return Loss, T _X	T _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	20.5	_
Input Return Loss, R _X	R _X RL	See Bias Table 2, pg. 10, Pinc= 0 dBm	dB	_	24.2	_

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

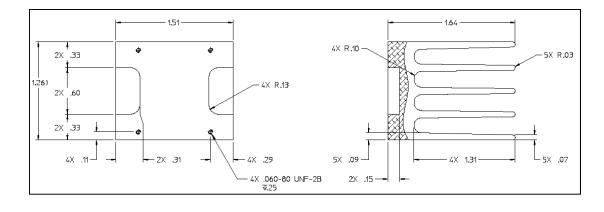
Rev. V5

Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Parameter	Symbol	50mA / 25V Conditions	Units	Min.	Тур.	Max.
T _X Input P1dB ²	T _X P1dB	2010 MHz, T _X to Antenna	dBm	_	>45.5	_
T _X 2 nd Harmonic	T _X 2Fo	2010 MHz, Pin = + 30 dBm	dBc	_	80	_
T _X 3 rd Harmonic	T _X 3Fo	2010 MHz, Pin = + 30 dBm	dBc	_	95	_
T _X Input Third Order Intercept Point	T _X IIP3	Pi= +10dBm, F1 = 2010 MHz, F2 = 2020 MHz	dBm	_	>64	_
T _X C.W. Input Power ²	T _X Pinc	F = 2010 MHz	dBm W	_	_	47 50
R _X C.W. Input Power	R _X Pinc	F = 2010 MHz	dBm W	_	_	41.5 14
T _X RF Switching Speed	t _{RF}	F = 2010 MHz (10-90% RF Voltage) 1MHz Rep Rate in Modulating Mode	ns	_	200	_


Parameter	Symbol	50mA / 25V Conditions		Min.	Тур.	Max.
T _X Input P1dB	T _X IP1dB	3.5 GHz, T _X to Antenna		_	>45	_
T _X 2 nd Harmonic	T _X 2Fo	3.5 GHz, Pin = + 30 dBm		_	88	1
T _X 3 rd Harmonic	T _X 3Fo	3.5 GHz, Pin = + 30 dBm	dBc	_	105	
T _X Input Third Order Intercept Point	T _X IIP3	Pi= +10dBm, F1 = 3.500 GHz, F2 = 3.510 GHz		_	>64	
R _X C.W. Input Power	R _X Pinc	F = 3.5 GHz	dBm W	_	_	40.5 11
T _X RF Switching Speed	t _{RF}	F = 3.5 GHz (10-90% RF Voltage) 1MHz Rep Rate in Modulating Mode	ns	_	200	_

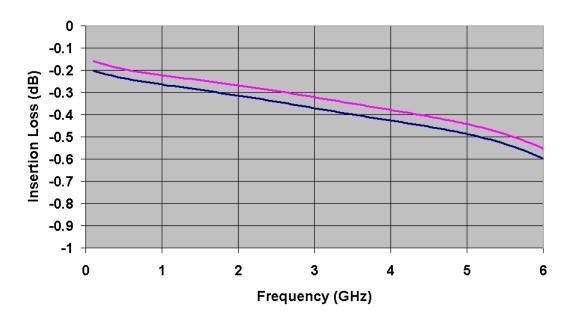
HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications


Rev. V5

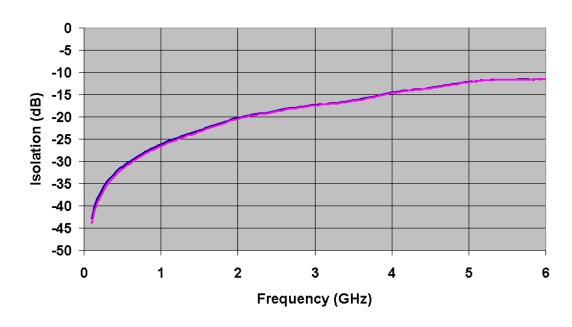
Electrical Specifications at +25°C, Characteristic Impedance, 50mA / 25V, $Z_0 = 50 \Omega$

Note that this part must be held to a constant baseplate temperature to achieve the power handling results specified above. Adding a heatsink to the baseplate will improve performance to values greater than shown here. The increase in maximum input power from using a heatsink depends on the specific heatsink design.

With a sample board mounted onto a heatsink of dimensions and fins shown below, this switch can handle up to 35 Watts C.W. of incident power.



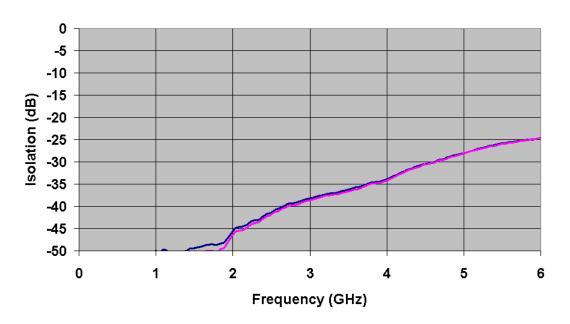
HMIC™ PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications


Rev. V5

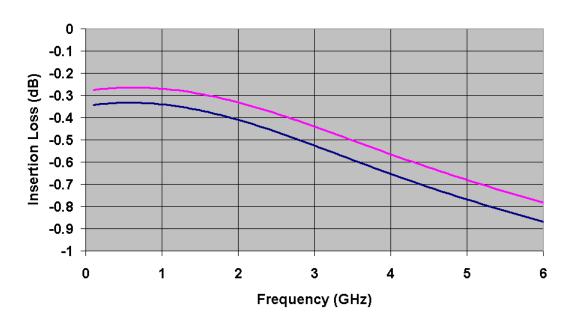
T_X Performance Curves at +25°C, Characteristic Impedance, Z_0 = 50 Ω

Tx Insertion Loss 20mA & 50mA Forward Bias

Tx Isolation 5V & 25V Reverse Bias



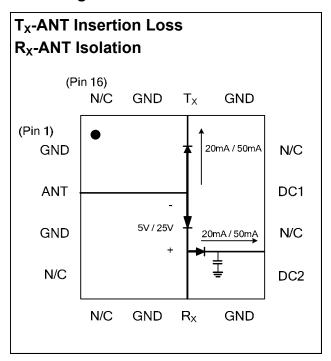
HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

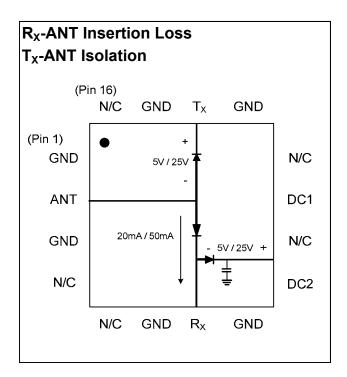

Rev. V5

R_X Performance Curves at +25°C, Characteristic Impedance, Z_0 = 50 Ω

Rx Isolation 5V & 25V Reverse Bias

Rx Insertion Loss 20mA & 50mA Forward Bias



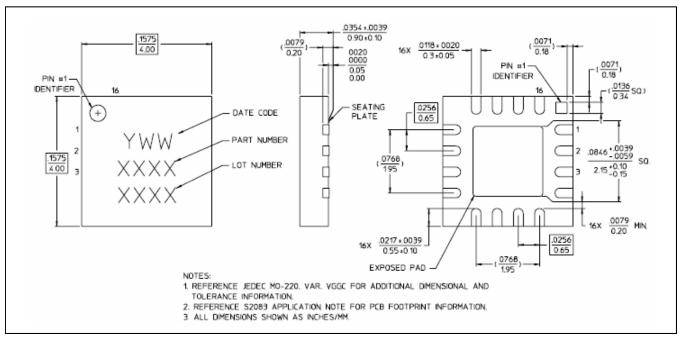


HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

Bias Diagrams & Tables

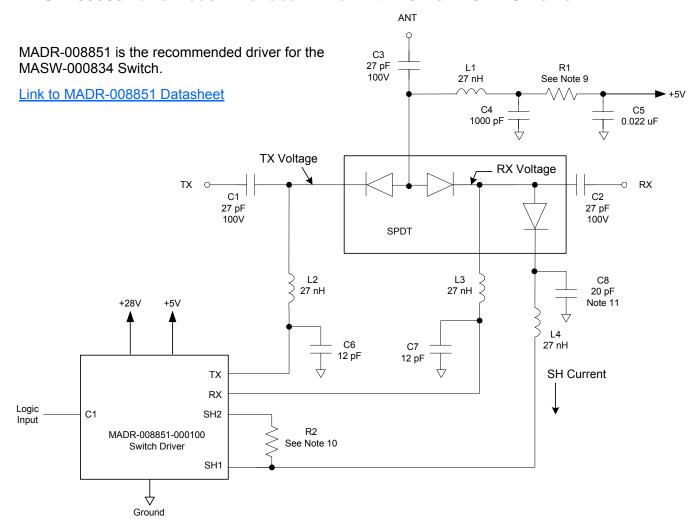
Bias Table 1	T _X	R _X	DC2	ANT
Pin	Pin 14	Pin 7	Pin 9	Pin 2
T _X -ANT Isolation	+5V, 0 mA	-20 mA	+5V, 0 mA	0V
T _X -ANT Insertion Loss	-20 mA	+5V, 0 mA	-20 mA	0V
R _x -ANT Isolation	-20 mA	+5V, 0 mA	-20 mA	0V
R _X -ANT Insertion Loss	+5V, 0 mA	-20 mA	+5V, 0 mA	0V


Bias Table 2	T _X	R _X	DC2	ANT
Pin	Pin 14	Pin 7	Pin 9	Pin 2
T _X -ANT Isolation	+25V, 0 mA	-50 mA	+25V, 0 mA	0V
T _X -ANT Insertion Loss	-50 mA	+25V, 0 mA	-50 mA	0V
R _X -ANT Isolation	-50 mA	+25V, 0 mA	-50 mA	0V
R _X -ANT Insertion Loss	+25V, 0 mA	-50 mA	+25V, 0 mA	0V

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

MASW-000834-13560T Outline - 4mm PQFN 16-Lead Saw Singulated


[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

HMIC[™] PIN Diode SPDT 50 Watt Switch for 0.05 - 6.0 GHz Higher Power Applications

Rev. V5

MASW-000834 and Recommended Driver with +5V & +28V DC Power

- Forward Bias Diode Voltage: ΔVf is ~0.9V @ 22 mA; ΔVf is ~1.0V @ 35 mA
- 9. R1 is calculated by $(Vcc-1.5V)/I_{series}$, where I_{series} is the desired bias current for the series diodes. For 21 mA load current, R1 = 165 Ω @ VCC = 5.0V and 82 Ω @ VCC = 3.3V. For 32 mA load current, R1 = 110 Ω @ VCC = 5.0V and 56 Ω @ VCC = 3.3V.
- 10. R2 is calculated by $(Vdd-1V)/I_{shunt}$, where I_{shunt} is the desired forward bias current for the shunt diode. The power dissipation is calculated by I_{shunt} x 27V. For 20 mA of I_{shunt} , R2 should use a 2511, 1W, 1.3k ohm resistor.
- 11. C8 is already built-in for M/A-COM MASW-000834-13560T switch.
- 12. The voltage at the common anode will be approximately 1.5V.
- 13. The current in through the back-biased diodes will be the leakage current for the diodes
- 14. C1-C5, L1-L4, R1, R2, and the switch are discrete components that should be installed on the user's board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz (values may vary based on the frequency).
- 15. There are 33 pF bypass capacitors included in the driver for the RX, TX, and SH1 ports. There are cases, especially at higher frequencies, where the optional 12 pF bypass capacitors (C6 and C7) that are shown on the schematic are needed.